SMART WEIGHING SOLUTIONS

frinstrum

R320 Digital Indicator Communications Manual

For use with Software Versions 1.2 and above

R300-603-100

Copyright

All Rights Reserved. No part of this document may be copied, reproduced, republished, uploaded, posted, transmitted, distributed, stored in or introduced into a retrieval system in any form, or by any means (electronic, mechanical, photocopying, recording or otherwise) whatsoever without prior written permission of Rinstrum Pty Ltd.

Disclaimer

Rinstrum Pty Ltd reserves the right to make changes to the products contained in this manual in order to improve design, performance or reliability.

The information in this manual is believed to be accurate in all respects at the time of publication, but is subject to change without notice. Rinstrum Pty Ltd assumes no responsibility for any errors or omissions and disclaims responsibility for any consequences resulting from the use of the information provided herein.

SPECIAL NOTE Trade Use of the Rinstrum R320 Indicator

This manual may occasionally make reference to Trade Use settings of the **R320 Indicator.**

Some individual settings may not be legal for trade use. Please check regulations with the appropriate Weights and Measures Authority.

"Everything should be made as simple as possible, but not simpler."

- Albert Einstein -

Table of Contents

1.	INTR	ODUCTION	.5
	1.1.	Intended Audience	.6
	1.2.	Scope	
	1.3.	The Manuals Set	
	1.4.	This Communications Manual	.6
	1.5.	Document Conventions	
2.	CONI	NECTING TO THE R300 SERIES	.7
	2.1.	rin-LINK	
		2.1.1. rin-LINK Activation	
		2.1.2. rin-LINK Communications Settings	
	2.2.	RS-232 Connection	.8
		2.2.1. Direct Personal Computer Link (RXD, TXD, GND)2.2.2. RS-232 Communications Settings	
	2.3.	rin-LINK vs RS-232 communications Settings	
3.	-	ING STARTED	
J.			
	3.1.	Using ViewR300	
	3.2. 3.3.	Protocol Summary Reading Gross Weight as Literal Value	
	3.3. 3.4.	Read Gross Weight as Final Value	
	3. 4 . 3.5.	Setting Values	
	3.6.	Remote Key Press	
4.		OCOL OVERVIEW	
4.			
	4.1.	Message Structure	
		4.1.1. Address Field	
		4.1.3. Register Id Field	
		4.1.4. Optional Parameters	
		4.1.5. Return Value	14
		4.1.6. CRC Calculation	
	4.2.	Error Handling	
	4.3.	Register Types	
	4.4.	Permissions	
		 4.4.1. Register Access	
5.	DECI	STER OPERATIONS AND PROPERTIES	
J .	5.1.	Register Operations	
	5.2.	Common Properties	
	0.2.	5.2.1. Type	
		5.2.2. Menu Text	
		5.2.3. Full Text	18
		5.2.4. Permission	
	5.3.	Type Specific Properties	
		5.3.1. RangeMin, RangeMax	
		5.3.2. Final Value	
		5.3.4. Default Value	
		5.3.5. Execute	
		5.3.6. Read Items	
6.	READ	DING STATUS AND ERROR CODES	22
	6.1.	REG SYSTEM STATUS	
	6.2.	REG SYSTEM ERROR	
7.	-	DTE KEY INTERFACE	
••	7.1.	Operation	
	7.1. 7.2.	Key-Codes	
	1.4.		

		7.2.1.	Physical Codes	
		7.2.2.	Example	
		7.2.3.	Logical Keys	
8.	EXEC	UTE FUNG	CTIONS	
	8.1.		on	
		8.1.1.	Span	
	0.0	8.1.2.		
	8.2.		ttings to EEPROM	
9.	STRE/	AMING		
	9.1.	Basic Op	peration	
	9.2.	Registers	s Available to Stream	
	9.3.)	
10.	ADVA		PE HANDLING (TYPE_MENU)	
11				
11.	APPEI	NDIX – PF	ROGRAM CONSTANTS	32
11.	APPEI 11.1.	NDIX – PF Register	ROGRAM CONSTANTS	32 32
11.	APPEI 11.1. 11.2.	NDIX – PF Register Comman	ROGRAM CONSTANTS	32 32 32
11.	APPEI 11.1. 11.2. 11.3.	NDIX – PR Register Comman Error Coo	ROGRAM CONSTANTS Types nds ides	
11.	APPEI 11.1. 11.2. 11.3. 11.4.	NDIX – PF Register Comman Error Coo Register	ROGRAM CONSTANTS Types nds ides Identifiers	
11.	APPEI 11.1. 11.2. 11.3. 11.4. 11.5.	NDIX – PF Register Comman Error Coo Register Key Code	ROGRAM CONSTANTS Types nds ides Identifiers	32 32 32 33 33 33 33 35
11.	APPEI 11.1. 11.2. 11.3. 11.4. 11.5. 11.6.	NDIX – PF Register Comman Error Coo Register Key Code Decimal,	ROGRAM CONSTANTS Types nds des Identifiers les , Binary and Hexadecimal Conversion	32 32 33 33 33 33 35 36
11.	APPEI 11.1. 11.2. 11.3. 11.4. 11.5. 11.6. 11.7.	NDIX – PR Register Comman Error Coo Register Key Code Decimal, Setup an	ROGRAM CONSTANTS	32 32 33 33 33 35 36 37
11.	APPEI 11.1. 11.2. 11.3. 11.4. 11.5. 11.6. 11.7. 11.8.	NDIX – PR Register Comman Error Coo Register Key Code Decimal, Setup an Glossary	ROGRAM CONSTANTS	32 32 33 33 33 35 35 36 37 38
11.	APPEI 11.1. 11.2. 11.3. 11.4. 11.5. 11.6. 11.7. 11.8. 11.9.	NDIX – PF Register Comman Error Coo Register Key Code Decimal, Setup an Glossary List of Fig	ROGRAM CONSTANTS	32 32 33 33 33 33 35 36 37 38 38 38
11.	APPEI 11.1. 11.2. 11.3. 11.4. 11.5. 11.6. 11.7. 11.8. 11.9.	NDIX – PF Register Comman Error Coo Register Key Code Decimal, Setup an Glossary List of Fig	ROGRAM CONSTANTS	32 32 33 33 33 33 35 36 37 38 38 38

1. Introduction

This manual details the communications protocol (rin-COMM) of the R320 Indicator.

This protocol is used by the **ViewR300** program to calibrate and configure the **R320 Indicator**. The **ViewR300 TEST** tab can be used as a convenient terminal to test the **R320** communications.

The **R320 Indicator** is fitted with **rin-LINK** communications as standard. This allows a temporary isolated communications link to be established with a PC permitting the instrument software to be upgraded. It also allows the use of computerised setup and calibration via the **ViewR300** software. The **R320** also has an RS-232 port, which may be used for printing, connection to a remote display or control using **rin-COMM**. The **R320** can utilise the protocol to fully control the indicator.

Figure 1: Rinstrum R320 Weight Indicator

Figure 2: Rinstrum R321 Weight Indicator

1.1. Intended Audience

This manual is aimed at the designer or installer who is familiar with the operation and setup of the **R320** Indicator.

1.2. Scope

This manual lists the commands and registers for the protocol. In practice, only a small subset of these commands would be used to control operational parameters.

1.3. The Manuals Set

This manual is part of a set of manuals covering the setup and operation of the instrument. The set includes the following:

- **Reference Manual** Contains detailed information on calibration and setup. This manual is intended for use by Scale Technicians who are installing the instrument.
- **Operator Manual** Aimed at the operation of the instrument, and covers the day-to-day operation of the unit.
- Quick Start Manual Intended for Scale Technicians who are familiar with the instrument and simply need a quick reference to menu options and connection diagrams, etc.
- Communications Manual Contains details on the communications protocol of the R300 Series.

1.4. This Communications Manual

This manual contains detailed information on the communications protocol for the **R320** and **R321**.

Note: The **R321** is the **R320** enclosed in a stainless steel housing. In this manual, any reference to the **R320** includes the **R321**.

1.5. Document Conventions

The following document conventions (typographical) are used throughout this Communications Manual.

Bold Text	Bold text denotes words and phrases to note.			
٨	This symbol denotes one space (used in R300 Commands)			
	Ellipses indicate an incomplete listing. For space considerations in this Manual complete listings of returned Command responses may not be shown.			
1234 _Н	The subscript _H indicates numerical values expressed in hexadecimal (radix 16).			
1010 _b	The subscript $_{\rm b}$ indicates a numerical value expressed in binary (radix 2)			
[]	Items enclosed in square brackets are optional.			
<char></char>	<char> denotes a special character value. eg. <cr> is carriage return.</cr></char>			
Ļ	This symbol indicates a <cr><lf> pair of characters.</lf></cr>			
1234	This font indicates message sent to an indicator.			
1234	This font indicates a response from an indicator.			
"string"	String values are enclosed in double quotes ""			
8	Items marked with ⊗ indicate that the setting is available only in Full Setup and is trade critical. When trade critical settings are changed the calibration counter will be incremented.			
REG	Register name. Refer to Register Identifiers page 33			

2. Connecting to the R300 Series

2.1. rin-LINK

A temporary infrared communications link can be established between any instrument in the **R300 Series** and a PC using an optional rin-LINK cable. The rin-LINK cable can be used to transfer setup information from a PC and download software upgrades to the instrument. This setup information can be stored for later use and/or transferred to other instruments.

The PC end of the rin-LINK cable is a standard COM port (female DB9) connector. The instrument end of the cable consists of an infrared transceiver, which attaches to the left side of the instrument display. To facilitate a quick and simple connection, the infrared transceiver is secured in place by a permanent magnet located within the head of the rin-LINK.

WARNING

The rin-LINK head contains a strong magnet and care should be taken with its proximity to electronic media (eg. credit cards, floppy disks, etc.) and/or other electronic instrumentation.

Note: The serial connection for the rin-LINK is standard to all R300 Series units.

Figure 3 shows the rin-LINK attached to the **R320**.

Figure 3: rin-LINK Attachment

2.1.1. rin-LINK Activation

This feature is used to temporarily connect a PC to the instrument for calibration and setup purposes.

A long press of the **GROSS/NET** key will toggle the rin-LINK infrared communications On/Off.

When the rin-LINK has been enabled the following will occur:

- The instrument briefly displays the prompt rin-L.
- The editing annunciators (ie. GRP, ITM, etc.) will flash while the instrument searches for activity. During this period, the **R320** also disables the RS-232 communications.
- Activity Located: If the instrument is **successful** in locating activity, the editing annunciators will continue to flash during the entire period of communications.
- **No Activity Located:** If the instrument **fails** to locate activity in five minutes, the rin-LINK will be disabled and the editing annunciators will stop flashing. The **R320** will also revert back to the normal RS-232 communications (ie. the SERIAL:TYPE setting will be re-activated).

2.1.2. rin-LINK Communications Settings

The communications settings for rin-LINK are 9600 baud, no parity, 8 data bits and 1 stop bit. This is often referred to as 9600 N81.

2.2. RS-232 Connection

2.2.1. Direct Personal Computer Link (RXD, TXD, GND)

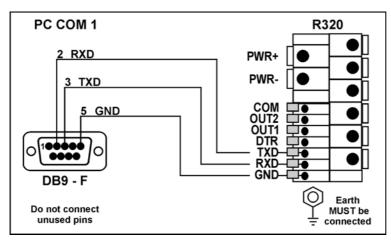


Figure 4: RS-232 - R320 to PC using COM Port (DB9)

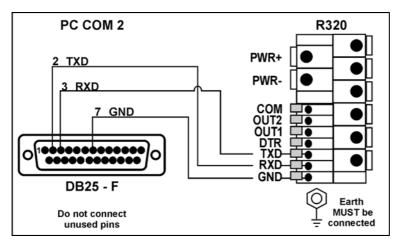


Figure 5: RS-232 - R320 to PC using COM Port (DB25)

2.2.2. RS-232 Communications Settings

The communications settings for RS-232 are configured using the SERIAL:BAUD and SERIAL:BITS items in the **R320** setup menus.

2.3. rin-LINK vs RS-232

Table 1 provides a summary of the differences between the two communications links:

	rin-LINK	RS-232
Supports rin-COMM protocol	Yes	Yes
Supported indicators	R300 Series	R320, R321
Permanent connection	No	Yes
Communications settings	9600, N, 8, 1	Configurable via SERIAL:BAUD, SERIAL:BITS
Timeout with no use	5 minutes	None
Software upgrade using rin-FLASH	Yes	No
Remote display (Master)	No	Yes
Printing (Print)	No	Yes
Auto outputs (Auto.1, Auto.2)	No	Yes
 Restricted control for OPTION:USE = NTEP rin-COMM permission always PERM_NONE Setup menu mimic operation blocked 	No	Yes
NET mode (Network)	When activated as described in rin-LINK Activation page 7.	 SERIAL:TYPE Auto switch to NET when command received

Table 1: rin-LINK vs RS-232 port

3. Getting Started

This section gives a brief introduction to using the **rin-COMM** protocol on the **R320**. The examples below use the broadcast address and assume that a PC is connected to the RS-232 port as described in RS-232 Connection page 8. The indicator is assumed to be at address **01**.

3.1. Using ViewR300

- Start ViewR300.
- Connect to the indicator.
- Select the **Test** page.
- Clear the Use STX, ETX box.
- The examples listed in this section may be entered directly in the edit box at the top left of the screen.
- Press the **Send** button or press the **ENTER** key to send a command to the indicator. The command that is sent is shown on the terminal screen after the symbols >>>.

Note: The ← symbol below indicates <CR><LF>. Using **ViewR300**, this is generated by pressing **Send**.

3.2. Protocol Summary

NOTE: The values used with the **Read Final** and **Write Final** commands are hexadecimal. Refer to Table 3: Decimal, Binary and Hexadecimal Conversion page 36 for information on conversions.

Figure 6 lists registers and commands for performing common tasks on the **R320**.

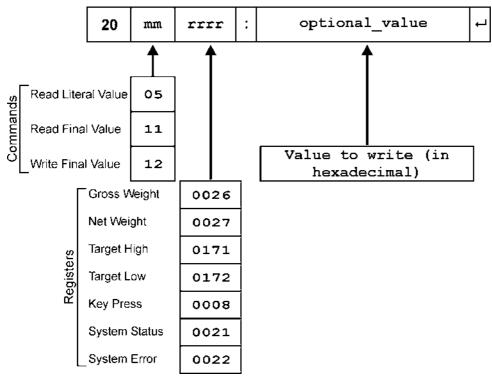


Figure 6: Commonly used Registers and Commands

3.3. Reading Gross Weight as Literal Value

Type the following (without the "" quotes) and then press **Send**:

"20050026:"

The indicator will response with a message like:

"81050026:^^10.00^kg^G"

3.4. Read Gross Weight as Final Value

Type the following and then press **Send**:

"20110026:"

The indicator will response with a message like:

"81110026:00003E8"

Where the value after the ":" is the hexadecimal value of the gross weight without any decimal places or units. In decimal, this value is 1000. For conversion between decimal and hexadecimal, refer to Table 3: Decimal, Binary and Hexadecimal Conversion page 36.

3.5. Setting Values

For example, change Set Point Target 1 (overweight) to 500 kg in final form for an indicator with units of kg.

Type the following and then press **Send**:

"20120171:1F4"

(1F4 in hexadecimal = 500 decimal)

The indicator will respond with a message like:

"81120171:0000"

Where the "0000" value after the ":" indicates no errors.

3.6. Remote Key Press

For example, remotely press the **TARE** key on an indicator.

Type the following and then press **Send**:

"20120008:8003"

The indicator will respond with a message like:

"81120008:0000"

Note: For the **ZERO** key type "20120008:8002".

4. **Protocol Overview**

The **R320** indicator contains a number of registers. The indicator is configured by reading and writing the information stored in these registers. Information such as gross weight is obtained by reading these registers. The communications protocol used to read and write to the registers is call **rin-COMM**. The **R320** has registers of different types to hold weights, menu options, etc.

4.1. Message Structure

The messages use ASCII characters. Almost all numeric values are transmitted in hexadecimal form using uppercase HEX characters (ie. 0 to 9, A to F).

Commands from a Master (typically a PC) to a Slave (typically an Indicator) are of the form:

Address Field	Command Field	Register Id		[Optional Parameter]	
xx	mm	rrrr	``: <i>''</i>	[ppppp]	←

Responses from Slave to Master are of the form:

Address Field	Command Field	Register Id		Return value	
УУ	mm	rrrr	``: <i>''</i>	VVVVV	Ļ

If **rin-COMM** is used in electrically noisy environments or over long cables, the optional CRC format may be used. The CRC format is:

	Address Field	Command Field	Register Id		[Optional Parameter]		CRC	
<soh></soh>	xx	mm	rrrr	``: ″	[ppppp]	Ļ	hhhh	<eot></eot>

and the response from the slave is of the form:

	Address Field	Command Field	Register Id		Return value		CRC	
<soh></soh>	УУ	mm	rrrr	``: <i>''</i>	VVVVV	┙	hhhh	<eot></eot>

Where:

xx is the Address Field sent to the indicator (Response bit = 0).

 $_{\rm YY}$ is the Address Field in the response from the indicator (Response bit = 1).

mm is the Command Field.

rrrr is the Register Id Field.

":" is the separator between the command header and the parameter or return value.

ppppp is the optional parameter value sent to the indicator.

vvvvv is the return value from the indicator.

4.1.1. Address Field

Bit	Field Name	Description				
7	Response	Set by the slave to indicate that this message is a response to a previous command.				
6	Error	Set to indicate that the data in this message is an error code and not a normal response. Refer to Error Handling page 14.				
5	Reply Required	Set by the master to indicate that a reply to this message is required by any slave to which it is addressed. If not set, the slave should silently perform the command.				
4 to 0	Indicator Address	Valid unit addresses are 01 $_{\rm H}$ to 1F $_{\rm H}$ (1 to 31 in decimal). 00 $_{\rm H}$ is the broadcast address. All slaves must process broadcast commands. When replying to a broadcast, slaves replace the broadcast address with their own address in this field. Set in the indicator menus with SERIAL:ADDRES.				

The address field is a two character beyadecimal field where:

4.1.2. Command Field

The command field is a two character, hexadecimal field holding the id of command to be performed. The following commands are defined to read register values or properties:

Command	Description
CMD_READ_TYPE	Read Type of register.
CMD_READ_RANGE_MIN	Read Minimum valid register value.
CMD_READ_RANGE_MAX	Read Maximum valid register value.
CMD_READ_LITERAL	Read Literal value of register.
	Note: Value will be converted to final value as required
	(eg. 2.000 kg G for gross weight).
CMD_READ_DEFAULT	Read Raw default register value.
CMD_READ_MENU_TEXT	Read Menu Text name shown on indicator display
	during setup menus.
CMD_READ_FULL_TEXT	Read Full Text. Text description to be used as
	"hint text" on PC.
CMD_READ_ITEM	Return item from list. Only valid for TYPE_MENU,
	TYPE_OPTION and TYPE_BITFIELD.
CMD_READ_PERMISSION	Read Permission string.
CMD_READ_FINAL	Read Value of register converted to final value.

The following command is defined to write values to registers:

Command	Description
CMD_WRITE_FINAL	Write Final Value to register.

The following command is defined to execute on registers of TYPE EXECUTE:

Command	Description
CMD_EXECUTE	Execute the function associated with a register.

4.1.3. Register Id Field

This is the four character hexadecimal register identifier. For the list of registers in the **R320** refer to Register Identifiers page 33.

4.1.4. Optional Parameters

The value here is dependent on the command and register being accessed. Not all commands require a parameter (eg. CMD_READ_FINAL). Commands that write to a register have the new value as the parameter.

4.1.5. Return Value

The value here is dependent on the command and register being accessed. If a command does not return a value (eg. CMD_WRITE_FINAL), then the return value will be an error code (eg. "0000" for no errors).

4.1.6. CRC Calculation

The use of the CRC format of messages is optional.

The CRC uses the 16 bit CCITT polynomial 11021 $_{\rm H}$ with a seed value of 0FFFF $_{\rm H}$.

4.2. Error Handling

If a command cannot be processed, the indicator returns an error code. Typical errors include:

- Register not implemented on indicator
- Register value out of range
- Command not implemented for register

An error response is indicated by setting the Error bit in the Address Field of the reply.

The message returned by the indicator in response to an error will be of the form:

Address Field	Command Field	Register Id		Error Code	
ZZ	mm	rrrr	``: <i>''</i>	WWWWW	┙

An error code will consist of a hexadecimal value representing the specific error code.

Note: When an error occurs, the most significant bit is **1** and other bits indicate the specific problem. More than one error bit may set if more than one error is present.

Refer to Error Codes page 33.

For example, attempting to read the type of the register with Id = 0000_{H} (not implemented) will return:

C1010000:A000

which is interpreted as:

C1_H = 1100 0001_b

- Response to a command
- Error
- Unit responding is address 01 _H

 01_{H} = REG_READ_TYPE (the command that was sent).

 0000_{H} = Register Id.

 $A000_{H} = 1010\ 0000\ 0000\ 0000\ b$ is the error code which is interpreted as

- REG_ERR_ERROR = 8000 _H (most significant bit set)
- REG_NOT_IMPLEMENTED = 4000 H

4.3. Register Types

The following types are defined:

Туре	Data Size (bytes)	Minimum Value	Maximum Value	Description
TYPE_BYTE	1	0	2 ⁸ -1	Small numeric values.
TYPE_OPTION	1	0	2 ⁸ -1	Lists of strings.
TYPE_USHORT	2	0	2 ¹⁶ -1	Unsigned numeric values.
TYPE_SHORT	2	-2 ¹⁵	2 ¹⁵ -1	Signed numeric values.
TYPE_LONG	4	-2 ³¹	2 ³¹ -1	Large numeric values.
TYPE_ULONG	4	0	2 ³² -1	Large unsigned numeric
				values.
TYPE_STRING				<nul> terminated string.</nul>
TYPE_BITFIELD	1, 2 or 4	0	2 ⁸ -1, 2 ¹⁶ -1,	Composite setting.
			or 2 ³² -1	
TYPE_MENU	1	0	2 ⁸ -1	Menu structure.
TYPE_BLOB				Binary Large OBject. A block
				of data, interpretation is
				inferred from Register Id.

4.4. Permissions

4.4.1. Register Access

Each register has permission levels required for reading, writing and executing. These permission levels can be read using the CMD_READ_PERMISSION command. The communications link has a permission level. Changing the current permission level is achieved by writing a passcode to a permission register. If the correct passcode has been given, future messages use that permission level. The passcodes for SAFE and FULL are also used for SPEC:SAFE.PC and SPEC:FULL.PC in the indicator's setup menus. If more than one passcode register has the correct passcode, the indicator uses the highest level (most powerful). The **R300 Series** have the following permission levels:

Permission Level	Description	Passcode Register
None	Lowest level permission. Operation is always available (eg. reading the gross weight).	NONE
Safe	Operation is available if the safe passcode has been given. Used for indicator settings that do not affect trade certification of indicator (eg. baud rate).	REG_ENTER_PASS_SAFE
Full	Operation is available if the FULL passcode has been given. Used for trade critical indicator settings (eg. decimal places).	REG_ENTER_PASS_FULL
Factory	Operation is available only to the indicator's internal operations (eg. writing to the gross weight).	N/A

If a command cannot be performed because the register needs a higher permission, the command will return an error code of REG_ERR_ACCESS_DENIED.

4.4.2. Calibration and Configuration Counters

Within the **R300 Series** there are a number of trade critical registers that can affect the calibration and/or legal for trade performance of the instrument. If any of these registers are altered, the trade certification of the scale will be voided.

The **R300 Series** provides built-in calibration counters to monitor the number of times the critical registers are altered. The value of the counter is stored within the unit and can only be reset at the factory. Each time a critical register is altered, the counter will increase. Whenever the instrument is powered up, or setup mode is entered/exited, the current value in the counter is displayed briefly (eg. C00010).

Note: When the Scale Use is set to NTEP two counters will display. The table below describes when the counter(s) will increment for Industrial, OIML or NTEP modes.

Industrial	OIML	NTEP
The Calibration Counter increments when trade critical settings, marked with ⊗, are changed. An example of the counter is C.00019.	The Calibration Counter increments when trade critical settings, marked with ⊗, are changed. An example of the counter is C.00019	The Calibration Counter increments when trade critical settings in the Calibration (CAL) menu, marked with \otimes , are changed. An example of the counter is C.00010 . The Configuration Counter increments when other trade critical settings (ie. not in the CAL menu), marked with \otimes , are
		changed. An example of the counter is F.00009 .

Internally, the **R300 Series** operates with two counters - the Calibration Counter (REG_CAL_COUNT_NTEP) and the Configuration Counter (REG_CFG_COUNT_NTEP). These correspond directly to the NTEP counters. The Industrial/OIML Calibration Counter (REG_CAL_COUNT_OIML) is the sum of these NTEP counters. Each register has a bit in the Permission property to indicate if a counter will be incremented when the register's value is modified. This counter is incremented even if the values are not saved to EEPROM.

The Calibration counter is incremented for trade critical registers that affect calibration parameters. The Configuration counter is incremented for trade critical registers that affect configuration parameters.

The value(s) of the counter(s) is written on the tamperproof trade label on the front of the indicator for trade-certified applications and functions as an electronic seal. If any legal for trade settings are changed on the instrument, the current value of the calibration counter will be different from the recorded value and the seal is broken. In this manual, items marked with \otimes indicate that the setting is a legal for trade critical settings.

5. **Register Operations and Properties**

5.1. Register Operations

The basic operations that can be performed on values in registers are:

- Read the current value of the register as Final or Literal.
- Write a new value to the register as Final.
- Execute a function associated with a register.

If a command fails, the returned message will have the Error bit set in the Address field to show that the return value is an error code. Not all indicators implement all registers. If an indicator does not support a register or a particular command on a register, it will return an error code of REG ERR NOT IMPLEMENTED. If an attempt is made to write to a register while the indicator is in the setup menus. the indicator will return REG ERR MENU IN USE. If an attempt is made to access a register without sufficient permission (refer to Register Access page 16), the indicator will return REG ERR ACCESS DENIED.

5.2. Common Properties

Each register stores information about itself. This information is referred to as properties. The register properties differ depending on the type of the register.

Registers implement the following common properties, regardless of the register's type.

5.2.1. Type

Each indicator supports a finite set of register types. It is recommended that this command be performed on a register (to check that it is supported) before performing any other operation.

Command:	CMD_READ_TYPE	
Return:	Register Type as a hexadecimal value	eg. 01 => TYPE_BYTE
Error Code:	REG_ERR_NOT_IMPLEMENTED	

5.2.2. Menu Text

This property is the text shown on the indicator's display while traversing the menus.

Command: CMD_READ_MENU_NAME Return: The indicator will return a string. Some registers may return an empty string in response to this command. The text may contain leading or trailing spaces.

eg. The Menu Text for REG_DECIMAL_PLACES is "DP" and when accessed from the **BUILD** menu the display shows **DP**.

5.2.3. Full Text

This property is a short description of the register. It is intended for hint text, not as a detailed description of the register's function and operation.

Command:	CMD_READ_FULL_NAME
Return:	The indicator will return a string. Some registers may return an empty
	string in response to this command. The text may contain leading or
	trailing spaces.

5.2.4. Permission

Command: Return:

CMD_READ_PERMISSION

This property returns a string of characters, indicating the permission bits for the register. The characters are (in order):

- Read Permission
- Write Permission
- Calibration Counter
- Configuration Counter

Read	Write	Calibration Counter	Configuration Counter
"-" None (any)	"-" None (any)	"-" None	"-" None
"S" Safe	"S" Safe	"C" Affects	"F" Affects
"F" Full	"F" Full		
"f" Factory (Internal)	"f" Factory (Internal)		

eg. The Permission property of REG_DECIMAL_PLACES returns "-F-F" which means:

- Read with any permission (always available).
- Write with Full permission.
- Does not affect Calibration Counter.
- Affects Configuration Counter.

5.3. Type Specific Properties

The behaviour of the following properties depends on the type of register.

5.3.1. RangeMin, RangeMax

All Registers have a concept of RangeMin and RangeMax. The register must contain a value that is in the range RangeMin <= Value <= RangeMax.

Command: Return:	CMD_READ_RA Hexadecimal	ANGE_MIN
Register Type	RangeMin	RangeMax
TYPE_SHORT, TYPE_USHORT, TYPE_LONG, TYPE_ULONG	Minimum value	Maximum value
TYPE_STRING, TYPE_BLOB	0	(No. of elements -1)
TYPE_OPTION, TYPE_MENU	0	(No. of Elements-1)
TYPE_BITFIELD	0	(No. of character positions – 1)

5.3.2. Final Value

The final value is the numeric value converted to user units (eg. weight in kg), but without unit or decimal places.

Note: These values are generally the same as the displayed value with the decimal point and units removed.

Command:	CMD_READ_FINAL
Return:	Hexadecimal value of register without units or decimal points.
Errors:	REG_ERR_ACCESS_DENIED if permission not valid.
Command: Parameter: Errors:	CMD_WRITE_FINAL hexadecimal value to write to register without units or decimal points. REG_ERR_UNDER_RANGE if new value < RangeMin. REG_ERR_OVER_RANGE if new value > RangeMax. REG_ERR_ACCESS_DENIED if permission not valid. REG_ERR_MENU_IN_USE if menu in use and attempting to write.

eg. An indicator displaying 2.345 kg Gross would return "929" when reading REG_WEIGHT_GROSS. Converting 929 $_{\rm H}$ to decimal gives 2345.

5.3.3. Literal Value

This is a formatted version of the Final value in a human readable form. It may be the same as the Final Value.

Command: CMD_READ_LITERAL

eg. The Literal value of a TYPE_OPTION register is the string to show the current value.

5.3.4. Default Value

Registers can have a factory default value associated with them.

Command: CMD_READ_DEFAULT

5.3.5. Execute

This command has optional parameters that are specific to each register.

Command:	CMD_EXECUTE
Return:	Dependent on register being executed on.

For more information, refer to Execute Functions page 26.

5.3.6. Read Items

This command reads one item from the list for the register. The item to be read is given as a parameter to the command. Each value is returned as a string.

Command:	CMD_READ_ITEM
Valid Types:	TYPE_OPTION, TYPE_MENU, TYPE_BITFIELD
Parameter:	RangeMin ≤ parameter ≤ RangeMax
Return:	String value
Error Code:	If no parameter is present, the indicator returns ERR_BAD_PARAMETER.

eg. Read items 0 and 1 from REG_DECIMAL_PLACES

Read item 0	200D0128:0⊷
Response	810D0128:000000⊷
Read item 1	200D0128:1⊷
Response	810D0128:00000.0⊷

6. Reading Status and Error Codes

6.1. **REG_SYSTEM_STATUS**

Bit(s)	Field	Description
31 to 18, 8, 5, 4	RESERVED	Reserved for future use.
17	OverLoad	The weight is above the maximum allowable weight reading.
16	UnderLoad	The weight is below the minimum allowable weight reading.
15	Error	Diagnostic error. Check REG_SYSTEM_ERROR.
14	MenuActive	Setup menus are active. Registers cannot be written to using rin-COMM.
13	Calibrating	Unit is busy calibrating.
12	Motion	Weight is not stable.
11	isCOZ	The gross reading is within $\pm \frac{1}{4}$ of a division of true zero.
10	isZero	The displayed weight is within the zero 'dead' band setting.
9	DisplayNet	Display is showing NET value.
7	Output1	The setpoint weight is over the setpoint target.
6	Output2	The setpoint weight is under the setpoint target.
30	InternalErrorCode	Used for Calibration Errors, etc.

This register contains status information about the indicator.

Table 2: Register REG_SYSTEM_STATUS Interpretation

The following table lists the values that the InternaErrorCode field may take. It lists the error message that would be displayed on the indicator's display if the operation was being performed using the setup menus.

Display	Code	Description
Message	Value	
no error	00	Last operation was successful.
(SPAN) (LO)	01	The load cell signal range (span) is too small for these settings.
(SPAN) (HI)	02	The load cell signal range (span) is too large for these settings.
(RES) (LO)	03	The scale build is configured for less than 100 graduations.
(RES) (HIGH)	04	The scale build is configured for more than 30,000 graduations.
(PT.TOO)	05	An attempt has been made to place a calibration point too close
(CLOSE)		to an existing calibration point.
	06	The calibration (linearisation) point does not exist.
(LIN.PT) (LO)	07	An attempt has been made to place a linearisation point below
		zero.
(LIN.PT) (HI)	08	An attempt has been made to place a linearisation point above
		fullscale.
(RES) (LO)		The scale build is configured for less than 100 graduations.
(RES) (HIGH)		The scale build is configured for more than 30,000 graduations.
(ZERO) (LO)		An attempt has been made to calibrate zero below -2mV/V.
(ZERO) (HI)		An attempt has been made to calibrate zero above +2mV/V.

6.2. REG_SYSTEM_ERROR

This register contains the error codes as displayed on the indicator's LCD display.

The instrument continually monitors the condition of the internal circuits. Any faults or out-of-tolerance conditions are shown on the display as an **E** type error message.

In the table below the following terms are used:

- Check: This item can be checked on site by service personnel.
- Return for Service: The instrument must be returned to the manufacturer for factory service.

Error	Description	Resolution
(E0001)	The power supply voltage is too low.	Check supply
(E0002)	The power supply voltage is too high.	Check scale / cables
(E0010)	The temperature is outside of allowable limits.	Check location
(E0020)	Scale build is incorrect. The number of graduations has been set too low or too high.	Fix up scale build
(E0100)	The digital setup information has been lost.	Re-enter setup
(E0200)	The calibration information has been lost.	Re-calibrate
(E0300)	All setup information has been lost	Enter setup and calibrate
(E0400)	The factory information has been lost.	Return for Service
(E0800)	The EEPROM memory storage chip has failed	Return for Service
(E2000)	ADC Out of Range Error. This may be caused from a broken load cell cable.	Check BUILD:CABLE setting. Check load cell cable, wiring, etc.
(E4000)	The battery backed RAM data has lost data.	Re-enter setup
(E8000)	The FLASH program memory is incorrect	Return for Service

The **E** type error messages are additive. For example if instrument is running off batteries and the temperature drops, the battery voltage may be too low. The resulting error messages will be **E 0011** (0001 + 0010). The numbers add in hexadecimal as follows:

1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - A - B - C - D - E - F (For example, 2 + 4 = 6, or 4 + 8 = C)

7. Remote Key Interface

7.1. Operation

The indicator polls the REG_KEYBOARD register looking for new key presses to act upon. No new key press is indicated by a value of KEY_NONE in this register. After reading the value, the unit sets REG_KEYBOARD to its default value (KEY_NONE). Remote control of the indicator is achieved by writing to this register with the new key-code. Priority is given to the local keyboard and the external key-code is lost.

7.2. Key-Codes

Key-codes are divided into physical, logical and ASCII codes and are represented by an unsigned 16-bit value:

Code Type	RangeMin	RangeMax	Notes
ASCII	0000 н	007F _Н	Normal ASCII characters including <nul> 00 $_{\rm H}$</nul>
Reserved	0080 _H	6FFF _H	Reserved for future use.
Logical	7000 _н	7FFF _Н	
Physical	8000 _н	FFFF _H	

Physical codes represent the physical keys on an indicator. Logical codes represent an indicator function. ASCII codes are used to enter data using device independent codes (eg. a numeric keypad could generate ASCII codes). Logical characters can be considered to include the ASCII characters as a subset. Refer to Key Codes page 35 for the list of codes.

7.2.1. Physical Codes

Physical keys are numbered from 1 to 63.

Physical codes are interpreted by the indicator in a device dependent manner.

Physical keys consist of the KEY_PHYSICAL bit **ORed** with the numeric value of the key (1 to 63). eg. (KEY_PHYSICAL + 1) = 1st physical key, . (KEY_PHYSICAL + 5) = 5th physical key.

A long press is indicated by the KEY_PHYSICAL_LONG bit being set. If not set, it is a short press.

To handle two simultaneous physical keys being pressed (to increase the number of keys available), one key number is **ORed** into the upper byte of the keycode and the other into the lower byte. The lower numbered key is shifted into the MSByte.

eg. Physical key 1 and Physical key 2: (KEY_PHYSICAL | (1 << 8) | (2))

7.2.2. Example

Tare an indicator by remotely sending the **TARE** key

Command Field12 HParameter Field8003 HRegister Field0008 HComplete Message20120008:8003 ↔Sample Response81120008:0000 ↔

CMD_WRITE_FINAL KEY_PHYSICAL_3 REG_KEYBOARD

7.2.3. Logical Keys

Logical codes maintain their meaning across a range of indicators.

eg. KEY_SETUP_FULL

8. Execute Functions

Registers that respond to CMD_EXECUTE may use the optional parameter field depending on the function involved. Execute functions are used to perform actions (eg. calibration) within the indicator, as opposed to register values that can simply be read or written (eg. changing the full-scale value).

8.1. Calibration

Calibration functions may take a number of seconds to complete. During this period the indicator will display a message to show that it is calibrating. When the calibration is complete, the indicator's display will return to displaying the current weight. To determine the progress of the calibration, read REG_SYSTEM_STATUS until the Calibrating bit is 0 (refer to REG_SYSTEM_STATUS page 22). Then check the InternalErrorCode field. A value of 0 indicates no errors with the last calibration. Non-zero values indicate various errors such as span high or low, etc.

Zero calibration is performed using REG_CALIBRATE_ZERO as shown in the table below.

Type of Calibration	Parameter	Other Registers
Zero Calibration using Test Weights	none	none
Direct mV/V Zero Calibration	(mV/V * 10,000) as	none
	hexadecimal value	

eg. Execute a Zero calibration using test weights.

Command	= 10 _H	CMD_E>	<i>(ECUTE</i>	
Register Id	= 0102 _H	REG_CA	LIBRATE_ZERO	
Parameter F	ield = ""	none		
Remove all w	eight from scale			
Complete Me	ssage		20100102:⊷	Indicator shows "Z. in P"
Sample Resp	onse		81100102:0000↩	
Check Status				
REG_SYSTE Complete Me			00040001	
•	•		20040021:⊷	
Sample Resp	onse while calibr	ating	81040021:00002000↩	Indicator is Calibrating
Sample Resp	onse when comp	olete	81040021:00000C00⊷	Calibration finished, no errors

The return value of 0C00 $_{\rm H}$ from REG_SYSTEM_STATUS is described in REG_SYSTEM_STATUS page 22. In binary this value is 0000 1100 0000 $_{\rm b}$ which has isCOZ=1 and isZero=1 showing that the indicator has been zeroed. InternalErrorCode field = 0 showing that the calibration was successful.

8.1.1. Span

Span calibration is performed using REG_CALIBRATE_SPAN as shown in the table below.

Type of Calibration	Parameter	Other Registers
Span Calibration using test weights	none	REG_WEIGHT_CALIBRATION
Direct mV/V Span Calibration	(mV/V * 10,000) as hexadecimal value	REG_FULLSCALE

eg. Execute a Span calibration using a scale base of 2500 g. Assume that the indicator has Units = g, Decimal Places = "000000".

Command	= 10 _H	CMD_EXECUTE			
Register Id	= 0103 _H	REG_	REG_CALIBRATE_SPAN		
Set span weig			20120100:9C4	REG_WEIGHT_CALIBRATION	
Add test weig Execute Sample Resp			20100103:↩ 81100103:0000↩	REG_CALIBRATE_SPAN Indicator shows "S. in P"	
• •	by reading onse while calibr onse when comp	•	20040021: ← 81040021:00002000← 81040021:00000000←	Indicator is Calibrating Calibration finished, no errors	

InternalErrorCode field = 0 showing that the calibration was successful.

eg. Execute a Direct Span calibration at 3.0 mV/V. Assume that REG_FULLSCALE already contains 3000 decimal.

Command	= 10 _H	CMD_EXECUTE	
Register Id	= 0103 _Н	REG_CALIBRATE_	SPAN
Parameter Fie	eld = 753	80 _н (3.0 * 10000 = 3000	0 decimal)
Execute with di Sample Respor Check Status	nse	20100103:7530↔ 81100103:0000↔ 20040021:↔	REG_CALIBRATE_SPAN REG_SYSTEM_STATUS
Sample Respor	ise	81040021:00000C00⊷	

InternalErrorCode field = 0 showing that the calibration was successful.

8.1.2. Linearisation

Adding linearisation points is similar to span calibration using test weights.

The desired weight value is written to REG_WEIGHT_CALIBRATION. To delete a point, set this value to zero.

Place the test weight on the scale.

Execute REG_CALIBRATE_LINx to add the point "x" to the calibration points ($1 \le x \le 5$).

Check REG_SYSTEM_STATUS for any errors.

eg. Assume an indicator that has been calibrated for zero and span at 3000 g. Add a linearisation point L1 at 1000g.

Write calibration weight	20120100:3E8← 81060100:0000←	REG_WEIGHT_CALIBRATION
Add calibration weight		
Execute linearisation L1	20040021:↩	REG_CALIBRATION_LIN1
	81100104:0000⊷	Unit shows "L. in P"
Check status	20040021:↩	
	81040021:00002000⊷	Busy Calibrating
	20040021:↩	
	81040021:00000000⊷	Completed successfully
eg. Deleting Linearisation p	point L1.	
Write calibration weight	20120100:0↩	REG_WEIGHT_CALIBRATION
-	81060100:0000⊷	
Execute linearisation L1	20040021:↩	REG_CALIBRATION_LIN1
	81100104:0000⊷	
Check status	20040021:↩┘	
	81040021:00000000⊷	Completed successfully

8.2. Save Settings to EEPROM

Save

When an indicator is switched on, it retrieves the last saved settings from EEPROM. When settings are modified by writing to or executing a register, the value is not automatically saved to EEPROM. If the unit is switched off or power is interrupted, the new setting will be lost. Executing REG_SAVE_SETTINGS will save the current settings to EEPROM.

eg. Save settings to EEPROM.

Settings	20100010:4	
	81100010:0000⊷	

REG_SAVE_SETTINGS

9. Streaming

9.1. Basic Operation

The streaming facility in the **R320** allows a master (PC) to quickly read a number of registers (up to three) from a slave (indicator) with one command. REG_STREAM_DATA contains the **final** value for the three registers. When new weight data is available, REG_STREAM_DATA is updated with the latest **final** values pointed to by REG_STREAM_REG1 to 3.

There is a list of registers that may be streamed. REG_STREAM_REG1, REG_STREAM_REG2 and REG_STREAM_REG3 are used to select three registers from this list. The raw value of each REG_STREAM_REG1 to 3 is an index into this list.

9.2. Registers Available to Stream

The following table lists the registers able to be streamed:

Index into list	Reg Id
0000 н	REG_NONE
0001 _Н	REG_ADC_SAMPLE_NUMBER
0002 _Н	REG_SYSTEM_STATUS
0003 _Н	REG_SYSTEM_ERROR
0004 _Н	REG_ABSOLUTE_MVV
0005 _Н	REG_WEIGHT_DISPLAY
0006 н	REG_WEIGHT_USER
0007 _Н	REG_WEIGHT_GROSS
0008 н	REG_WEIGHT_NET
0009 _Н	REG_WEIGHT_TARE
000А _Н	REG_WEIGHT_PEAK
000В _Н	REG_WEIGHT_HOLD
000С _н	REG_WEIGHT_TOTAL
000D н	REG_WEIGHT_LIVESTOCK

9.3. Example

Figure 7 below, demonstrates the use of the streaming registers. In this example, REG STREAM REG1 contains the value 0003 H. Looking up this index into the list of registers yields REG_SYSTEM_ERROR. So the 1st position in REG_STREAM_DATA is filled in with the contents of REG_SYSTEM_ERROR. Similarly, REG_STREAM_REG2 contains 0004 $_{\rm H}$, which refers to REG_ABSOLUTE_MVV. So the 2nd position in REG_STREAM_DATA is filled in with the contents of REG_ABSOLUTE_MVV. The 3rd position in REG STREAM DATA is filled in with the contents of REG ADC SAMPLE NUMBER.

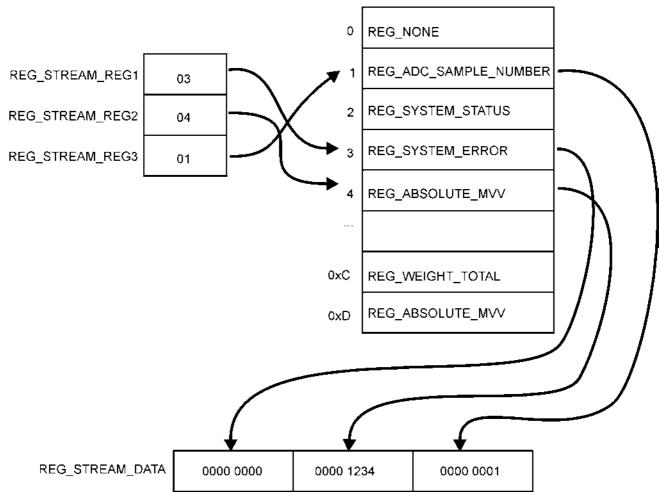
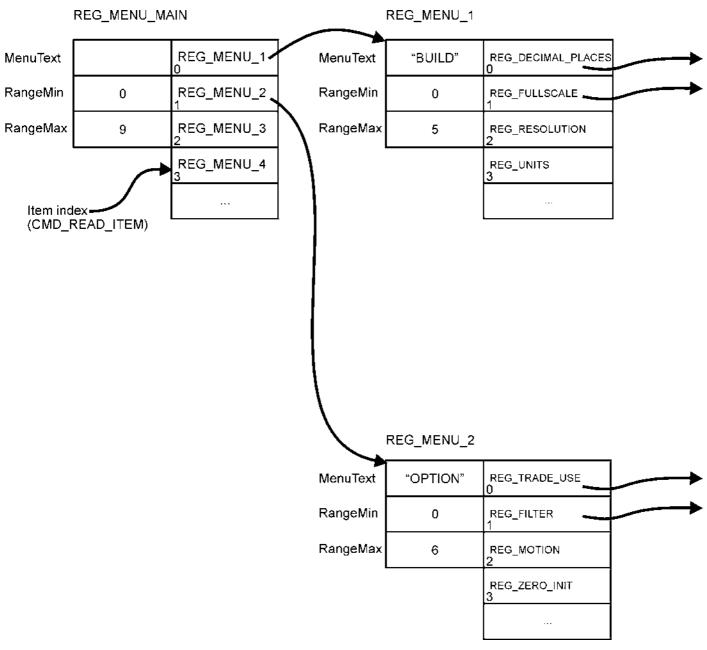



Figure 7: Streaming Registers Example

Read Stream Register	20050040:↩
Response	81050040:00000000000012340000001⊷

10. Advanced Type Handling (TYPE_MENU)

The menu items can be accessed from the COMM port. Figure 8 illustrates examples of the menu levels.

Figure 8: TYPE_MENU Example

11. Appendix – Program Constants

11.1. Register Types

Туре	Code	Description
TYPE_CHAR	00H	8-bit signed value (typically used for ASCII characters)
TYPE_UCHAR	01H	8-bit unsigned value
TYPE_SHORT	02H	Signed 16-bit value
TYPE_USHORT	03H	Unsigned 16-bit value
TYPE_LONG	04H	Signed 32-bit value
TYPE_ULONG	05H	Unsigned 32-bit value
TYPE_STRING	06H	NULL terminated string of CHAR
TYPE_OPTION	07H	Selectable option.
TYPE_MENU	08H	Menu type
TYPE_WEIGHT	09H	Contains weight and status information
TYPE_BLOB	0AH	Untyped block of memory
TYPE_EXECUTE	0BH	Executable commands
TYPE_BITFIELD	0CH	Options combined into a compressed field

11.2. Commands

Command	Code	Description
CMD_NONE	00H	
CMD_READ_TYPE	01H	Read the type of a register
CMD_READ_RANGE_MIN	02H	Read the minimum value allowed for this register
CMD_READ_RANGE_MAX	03H	Read the maximum value allowed for this register
CMD_READ_RAW	04H	Read internal raw value (typically for factory use only)
CMD_READ_LITERAL	05H	Read literal value.
CMD_WRITE_RAW	06H	Write internal raw value (typically for factory use only)
CMD_READ_DEFAULT	07H	Read default value
CMD_READ_MENU_TEXT	09H	Read Menu Text as used in the instrument menus
CMD_READ_FULL_TEXT	0AH	Read Full Menu Text
CMD_READ_ITEM	0DH	Read Item from Option list
CMD_READ_PERMISSION	0FH	Read register permission settings
CMD_EXECUTE	10H	Execute a command on a TYPE_EXECUTE register
CMD_READ_FINAL	11H	Read final register value
CMD_WRITE_FINAL	12H	Write final register value

11.3. Error Codes

The error code returned when a command is not processed correctly is a hexadecimal value that is a combination of the following constants.

Error	Code	Description
REG_ERR_NONE	0000H	
REG_ERR_ERROR	8000H	Always set to show an error
REG_ERR_UNKNOWN	4000H	Unknown error – internal use only
REG_ERR_NOT_IMPLEMENTED	2000H	Feature not implemented on this device
REG_ERR_ACCESS_DENIED	1000H	Action not permitted for the current access rights
REG_ERR_UNDER_RANGE	0800H	Value less than RangeMin
REG_ERR_OVER_RANGE	0400H	Value greater than RangeMax
REG_ERR_ILLEGAL_VALUE	0200H	Value not compatible with data type
REG_ERR_ILLEGAL_OPERATION	0100H	Operation not defined
REG_ERR_CANNOT_SAVE	0080H	Write Operation failed
REG_ERR_BAD_PARAMETER	0040H	Parameter not valid
REG_ERR_MENU_IN_USE	0020H	Cannot modify register values while SETUP menus are
		active
REG_ERR_RESERVED_4	0010H	
REG_ERR_RESERVED_3	0008H	
REG_ERR_RESERVED_2	0004H	
REG_ERR_RESERVED_1	0002H	
REG_ERR_DATA_ERROR	0001H	Internal data error

11.4. Register Identifiers

Register	Code	Туре	Example	Description
REG REGISTER VERSION	0001H	STRING	V1.0	Version of the protocol
REG COPYRIGHT	0002H	STRING	(C) Rinstrum 2003	Copyright message
REG UNIT MODEL	0003H	STRING	R320	Model of the instrument
REG_SOFTWARE_VERSION	0004H	STRING	V1.2	Software version
REG_UNIT_SERIAL_NO	0005H	ULONG	3106432	Instrument Serial Number
REG_KEYBOARD	0008H	USHORT	KEY_TARE	Write to simulate key presses
REG_DISPLAY_RAW	0009H	BLOB	0100005B6D3F	Contents of LCD display memory
REG_SAVE_SETTINGS	0010H	EXECUTE		Save Settings command
REG_MENU_MAIN	0011H	MENU		Start of menu definitions
REG_CAL_COUNT_OIML	0012H	USHORT	0000033	OIML Calibration counter
REG_CAL_COUNT_NTEP	0013H	USHORT	000000D	OIML Calibration counter
REG_CFG_COUNT_NTEP	0014H	USHORT	00000014	OIML Configuration counter
REG_ENTER_PASS_FULL	0019H	ULONG	000004D2	Write to attempt Passcode
REG_ENTER_PASS_SAFE	001AH	ULONG	000009A4	Read is only allowed if correct
				Write 0 to lock instrument
				again
REG ADC SAMPLE NUMBER	0020H	ULONG	00169196	Counts each new reading
REG_ADC_SAMPLE_NOMBER	002011 0021H	ULONG	00000200	Instrument Status
REG SYSTEM ERROR	002111 0022H	ULONG	00000000	Instrument Error Status
REG ABSOLUTE MVV	0022H	WEIGHT	00006187	Absolute signal in mV/V
REG WEIGHT DISPLAY	0024H	WEIGHT	000005DC	Displayed weight reading
REG WEIGHT USER	0025H	WEIGHT	000005DC	Gross or Net weight
REG WEIGHT GROSS	0026H	WEIGHT	000005DC	Gross weight
REG WEIGHT NET	0027H	WEIGHT	000001F4	Net weight
REG WEIGHT TARE	0028H	WEIGHT	000003E8	Tare weight
REG WEIGHT PEAK	0029H	WEIGHT	000009C4	Peak held weight
REG WEIGHT HOLD	002AH	WEIGHT	0000000	Manual held weight
REG_WEIGHT_TOTAL	002BH	WEIGHT	000009C4	Total weight reading

Register	Code	Туре	Example	Description
REG WEIGHT LIVESTOCK	002CH	WEIGHT	000001F4	Livestock weight
REG_WEIGHT_LIVESTUCK		VEIGHT	000001F4	
REG_STREAM_DATA	0040H	BLOB	0017ABC0000A	Block of data selected by
REG_STREAM_DATA	00400	BLUB	0017ABC0000A	STREAM REGS
REG STREAM MODE	004411			STREAM_REGS
	0041H	OPTION	0000001	ladou for first register date
REG_STREAM_REG1	0042H	MENU	0000001	Index for first register data
REG_STREAM_REG2	0043H	MENU	0000002	Index for second register data
REG_STREAM_REG3	0044H	MENU	0000005	Index for third register data
REG_PASSCODE_FULL	00D0H	ULONG	000004D2	Actual Full Passcode
REG_PASSCODE_SAFE	00D1H	ULONG	000009A4	Actual Safe Passcode
REG_MENU_1	00E0H	MENU		Sub-menu items
REG_MENU_10	00E9H			
REG_CAL_STAGE0	00F0H	BLOB	3D570025000EF	Data block for stage 0
REG CAL STAGE1	00F1H	BLOB	0BA302000FFFF	Data block for stage 1
REG CAL STAGE2	00F2H	BLOB	08E0000000000	Data block for stage 2
REG WEIGHT CALIBRATION	0100H	WEIGHT	000005DC	Weight used for calibration
REG CALIBRATE ZERO	0102H	EXECUTE		Calibrate Zero command
REG CALIBRATE SPAN	0102H	EXECUTE		Calibrate Span command
REG_CALIBRATE_LIN1	0103H	EXECUTE		Linearisation commands
		EXECUTE		Lineansation commands
REG_CALIBRATE_LIN5	0108H			
REG_ZERO_MVV	0111H	WEIGHT	FFFFFFF	Calibrated Zero mV/V
REG_SPAN_WEIGHT	0112H	WEIGHT	000009C4	Calibrated Span Weight
REG_SPAN_MVV	0113H	WEIGHT	000061A8	Calibrated Span mV/V
REG_LIN1_WEIGHT	0114H	WEIGHT	08000001	Weight at Linearisation points
REG_LIN5_WEIGHT	0118H			> 00100000 means no point
REG_FULLSCALE	0121H	LONG	00000BB8	Fullscale setting
REG_RESOLUTION	0122H	OPTION	0000000	Resolution setting
REG DECIMAL PLACES	0128H	OPTION	0000000	Decimal Point position
REG UNITS	0129H	OPTION	0000000	Units selection
REG CABLE MODE	012AH	OPTION	0000000	4/6 wire operation
REG HIRES MODE	012BH	OPTION	00000000	High resolution (x10) mode
	012BT			
REG TRADE USE	0130H	OPTION	0000000	Trade or Industrial operation
REG FILTER	0131H	OPTION	00000000	
				Filtering setting
REG_MOTION	0132H	OPTION	0000000	Motion setting
REG_ZERO_RANGE	0133H	OPTION	0000000	Zero range setting
REG_ZERO_TRACKING	0134H	OPTION	0000000	Zero tracking setting
REG_ZERO_INIT	0135H	OPTION	0000000	Initial zero operation
REG_ZERO_BAND	0136H	LONG	0000000	Zero band setting
REG_SERIAL_TYPE	0140H	OPTION	0000000	Type of serial output
REG_SERIAL_BAUD	0141H	OPTION	0000000	Baud rate
REG_SERIAL_BITS	0142H	BITFIELD	0000000	Parity and Stop bits
REG SERIAL ADDRESS	0143H	BYTE	0000001F	Network Address
REG PRINTER SEQUENCE	0144H	EXECUTE		Reset Printer Seq. command
REG CLOCK	0150H	STRING	16/10/2003 10:32	Full Date/Time string
REG_CLOCK REG_CLOCK_FORMAT	0150H	OPTION	00000000	Date format selection
REG_DATA_DD	0152H	USHORT	00000011	Date
REG_DATA_MM	0153H	USHORT	0000000A	Month
REG_DATE_YYYY	0154H	USHORT	000007D3	Year
REG_TIME_HH REG_TIME_MM	0155H	USHORT	000000A	Hour
	0156H	USHORT	00000020	Minute

Register	Code	Туре	Example	Description
REG_TIME_SS	0157H	USHORT	0000015	Second
REG_KEY_LOCK	0160H	BITFIELD	0000000	Key locking
REG_USER_KEY_FUNC	0161H	OPTION	0000000	Special Function setting
REG_AUTO_OFF_TIME	0162H	OPTION	0000000	Auto power off setting
REG_BACKLIGHT	0163H	OPTION	0000000	Backlight options
REG_REMOTE_KEY_FUNC	0164H	OPTION	0000000	Remote key function setting
REG_SETPT_SRC	0170H	OPTION	0000000	
REG_SETPT_TARGET_HIGH	0171H	LONG	000007D0	Setpoint target high
REG_SETPT_TARGET_LOW	0172H	LONG	000003E8	Setpoint Target low
REG_COUNT_QTY	0180H	ULONG	000000A	Counting sample quantity

11.5. Key Codes

Key Code	Code	Description
KEY_NONE	0000 _H	No key pressed
KEY_SETUP_FULL	7001 _H	Access to Full setup menu
KEY_SETUP_SAFE	7002 _H	Access to Safe setup menu
KEY_ZERO	7201 _H	Zero function
KEY_TARE	7202 _H	Tare function
KEY_GROSS_NET	7203 _H	Gross/Net function
KEY_PRINT	7204 _H	Print function
KEY_USER_FN1	7205 _Н	User F1 function
KEY_POWER_ON	7301 _н	Power key press
KEY_POWER_OFF	7302 _H	Power Off function
KEY PHYSICAL 1	8001 _H	Physical key codes. Eg. Key 1 = Power, Key 2 = Zero etc.
KEY PHYSICAL 20	8014 _H	
KEY_PHYSICAL_1	8081 _H	Long presses (> 2 seconds) of the Physical keys
KEY_PHYSICAL_2	8094 _H	

11.6. Decimal, Binary and Hexadecimal Conversion

Decimal (radix 10)	Binary (radix 2)	Hexadecimal (radix 16)
0	0000 0000 b	00 н
1	0000 0001 _b	01 _Н
2	0000 0010 _b	02 _н
3	0000 0011 _b	03 _Н
4	0000 0100 b	04 _H
5	0000 0101 _b	05 н
6	0000 0110 _b	06 н
7	0000 0111 _b	07 _Н
8	0000 1000 _b	08 н
9	0000 1001 _b	09 н
10	0000 1010 _b	0А _Н
11	0000 1011 _b	0В _Н
12	0000 1100 _b	0С _Н
13	0000 1101 _b	0D _H
14	0000 1110 _b	0Е _Н
15	0000 1111 _b	OF _H
16	0001 0000 _b	10 _н
17	0001 0001 b	11 _Н
18	0001 0010 b	12 _н
254	1111 1110 b	OFE H
255	1111 1111 _b	OFF _H

 Table 3: Decimal, Binary and Hexadecimal Conversion

11.7. Setup and Calibration Errors

These messages show status messages or errors that may occur during the instrument setup and calibration.

Error	Description	Resolution
(ENTRY) (DENIED)	The instrument may be in Safe Setup and an item that needs Full Setup has been selected for editing.	Access Full Setup to edit the item.
	When accessing setup, more than three attempts have been made with the incorrect passcode.	Turn the instrument off. When the instrument is turned back on, enter the correct passcode to access setup.
(LIN.PT) (LO)	An attempt has been made to place a linearisation point below zero.	Incorrect linearisation point entered (must be between zero and full scale).
(PT.TOO) (CLOSE)	An attempt has been made to place a calibration point too close to an existing calibration point.	Re-enter the calibration point. Points must be spaced by at least 2% of full scale from each other.
(RES) (LO)	The scale build is configured for less than 100 graduations.	Check the resolution (count-by) and capacity settings.
(RES) (HIGH)	The scale build is configured for more than 30,000 graduations.	Check the resolution (count-by) and capacity settings.
(SPAN) (LO)	The load cell signal range (span) is too small for these settings.	Incorrect span weight entered (must be between zero and full scale). Scale wiring incorrect. Wrong load cell capacity (too large). Wrong or no calibration weight added to scale.
(SPAN) (HI)	The load cell signal range (span) is too large for these settings.	Incorrect span weight entered (must be between zero and full scale). Scale wiring incorrect. Load cell capacity too small for application.
(ZERO) (LO)	An attempt has been made to calibrate zero below -2mV/V.	Scale wiring incorrect
(ZERO) (HI)	An attempt has been made to calibrate zero above +2mV/V.	Remove all weight from scale. Scale wiring incorrect.

11.8. Glossary Terms

Term	Definition
Calibration	An adjustable parameter that can affect measurement or performance accuracy and,
Parameter	due to its nature, needs to be updated on an ongoing basis to maintain device
	accuracy, eg., span adjustments, linearisation factors, and coarse zero adjustments
Configuration	An adjustable or selectable parameter for a device feature that can affect the
Parameter	accuracy of a transaction or can significantly increase the potential for fraudulent use
	of the device and, due to its nature, needs to be updated only during device
	installation or upon replacement of a component, eg., division value (increment),
	sensor range, and units of measurement.
Count-by	The smallest change in weight units that the display can show. See also Resolution.
CRC	Cyclic Redundancy Check
Division	A single graduation.
EEPROM	Electrically Erasable Programmable Read-Only Memory
FIR	Finite Impulse Response
Full Scale	The maximum gross weight allowed on the scale. This is used to detect overload and
	underload conditions, etc.
Graduations	The maximum number of display steps between zero gross load and full capacity
	gross load. It is equal to the full scale divided by the resolution.
LED	Light Emitting Diode
NTEP	National Type Evaluation Program
OIML	International Organization of Legal Metrolology
PLC	Programmable Logic Controller
Range	Total change in weight between zero gross load and full capacity gross load (ie. the
	nominated total capacity of the scale). It is always given in displayed weight units.
Register	
Resolution	The smallest change in weight units that the display can show. See also Count-by.
rin-COMM	The Communications Protocol used to communicate with the R300 Series
rin-LINK Cable	Rinstrum opto-isolated infrared communications link cable
RS-232	Standard for communications hardware layers.
Step-Response	The step-response is the time between placing a weight on the scale and the correct
	weight reading being displayed.
Transients	A temporary voltage oscillation or spike caused by a sudden change of load (or other
	external influence).
Units	The actual units of measurement (kilograms, tonnes, pounds, etc.).

11.9. List of Figures

Figure 1: Rinstrum R320 Weight Indicator	5
Figure 2: Rinstrum R321 Weight Indicator	5
Figure 3: rin-LINK Attachment	7
Figure 4: RS-232 - R320 to PC using COM Port (DB9)	8
Figure 5: RS-232 - R320 to PC using COM Port (DB25)	8
Figure 6: Commonly used Registers and Commands	10
Figure 7: Streaming Registers Example	30
Figure 8: TYPE_MENU Example	31

11.10. List of Tables

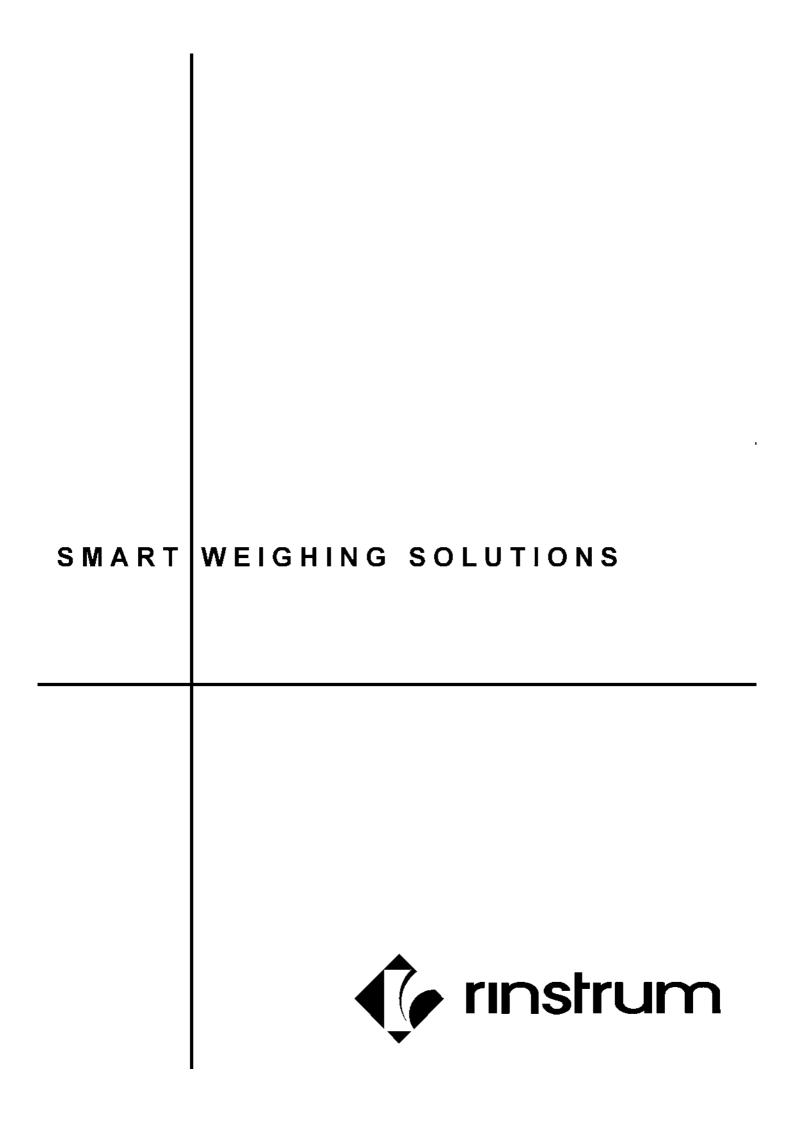
Table 1: rin-LINK vs RS-232 port	9
Table 2: Register REG SYSTEM STATUS Interpretation	
Table 3: Decimal, Binary and Hexadecimal Conversion	

12. Index

Α

Audience, 6 Calibration, 26 Communications Manual, 6 Copyright, 2 Counters, Calibration and Configuration, 17 CRC Calculation, 14 D Disclaimer, 2 **Document Conventions**, 6 Ε Error Codes, 22 Error Handling, 14 Examples Keypress, Remote, 11 Linearisation, 28 Reading Weight, 11 Save Settings, 28 Setting Values, 11 Span Calibration, 27 Streaming, 30 Zero Calibration, 26 Execute Save Settings, 28 Execute Functions, 26 F Field

Address, 13 Command, 13 **Optional Parameters**, 14 Register Id, 14


G

Glossary of Terms, 38 GROSS/NET Key, 7 Κ Key-Codes, 24 Keypress, Remote, 24 L Linearisation, 28 Logical Keys, 25 Μ Message Structure, 12 0 **Operator Manual**, 6 Ρ Physical Codes, 24 **Program Constants** Commands, 32 Decimal, Binary, Hexidecimal Conversion, 36 Error Codes, 33 Key Codes, 35 Register Identifiers, 33 Register Types, 32 Setup and Calibration Errors. 37 Protocol Structure, 12 Protocol Summary, 10 Q Quick Start Manual, 6 R Reading Status, 22

Reference Manual, 6

Register Execute, 20 Items, 21 List of Types, 15 Permissions, 16 **Register Properties** Default Value, 20 Final Value, 20 Full Text, 18 Literal Value, 20 Menu Text. 18 Permission, 19 RangeMax, 19 RangeMin, 19 Type, 18 Remote Tare, 25 Return Value, 14 rin-COMM, 10, 12 rin-LINK, 7 rin-LINK Activation, 7 rin-LINK Communications Settings, 8 RS-232, 8, 10 **RS-232** Communications Settings, 8 S

Save Settings, 28 Serial PC Link, 8 Span, 27 Streaming, 29 Т Trade Use, 2 Type Menu, 31 ViewR300, 5, 10

